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Abstract

The MARFE stability is considered on closed magnetic ®eld lines in a con®guration having an X-point. The model

incorporates both perpendicular and parallel transport and takes into account the ¯ux expansion in the vicinity of the

X-point. The stability analysis can be reduced to a standard eigenvalue problem for the temperature perturbation. The

ballooning representation of the perturbation is shown to be essentially a method to separate radial and poloidal

variables and to reduce the two-dimensional heat conduction equation with periodic metric coe�cients to a one-di-

mensional equation in a ballooning space. The e�ect of the toroidal magnetic topology on the marfe stability is in-

vestigated. It is shown that the ¯ux expansion near the X-point has a destabilizing e�ect. The competing stabilizing

e�ect is associated with the `steepening' of the ballooning perturbation both in radial direction (between the magnetic

surfaces) and perpendicular to the magnetic ®eld lines on the magnetic surfaces. The main result of the work argues that

in the stability analyses both parallel and perpendicular heat ¯uxes must be taken into account and can not be omitted

without change in the spectrum of the anisotropic heat conduction equation. Ó 1999 Elsevier Science B.V. All rights

reserved.
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1. Introduction

The MARFE phenomenon is usually quoted as an

example of the self-organisation processes in a tokamak

edge plasma [1]. Self-enhanced impurity radiation cool-

ing still remains the main physical mechanism for the

thermal-radiation instability of the impure edge plasma.

This instability develops when a local decrease of tem-

perature re-enforces the impurity radiation, causing a

further cooling of the plasma, and when thermal con-

duction is unable to compensate this energy loss. The

experimental observations from ASDEX Up and other

tokamaks indicate that the marfe tends to locate itself

near to the X-point, where it can be almost in quasi-

steady state condition [2].

The linear stability analyses of the plasma edge pa-

rameters which provides the onset of the X-point

MARFE should be carried out in a 2D toroidal mag-

netic geometry with an X-point. The main problem of a

such 2D analysis in the toroidal geometry is that the

variables (usually they are the ¯ux co-ordinates) are not

separable, thus one is unable to apply the usual repre-

sentation involving the ordinary Fourier expansion

without having a mixture of the eigenmodes. The

problem arises due to the poloidal variation of the

metric coe�cients and the equilibrium quantities.

A number of investigations have been performed in

this direction, reducing the 2D problem to a 1D problem

by simply excluding the radial or poloidal heat ¯ux in

the heat equation or by considering the cylindrical ap-

proximation, thus ignoring the toroidal and X-point

e�ects [3]. In some consideration the perpendicular heat

¯uxes were excluded because of the high classical elec-

tron heat conduction along the ®eld lines, enforcing

nearly constant temperature on magnetic ¯ux surfaces.

However, because of the strong temperature dependence

of the classical parallel conduction and the electron heat

¯ux limit at low densities, noticeable gradients along

®eld lines are to be expected at typical tokamak edge

parameters if there are su�ciently strong, localized
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energy sinks. These can be caused by, for example, im-

purity radiation. It is obvious that this simpli®cation

does not work close to the X-point, where the radial

¯uxes are expected to be strong. For the same reason the

toroidal e�ects must be fully employed in the stability

analyses of the MARFE-type perturbation in a realistic

tokamak con®guration. The numerical attempts to solve

the 2D heat equation in realistic geometry brings with it

a complicated mixture of the modes that makes the

analysis rather di�cult [4].

In this paper we consider a 2D linear stability anal-

ysis of the MARFE-type perturbation inside the last

magnetic surface in a toroidal geometry with a sep-

aratrix. Based on the special type of perturbation which

allows one to resolve the separability problem of the

heat equation in toroidal geometry, we will prove that

both the radial and parallel heat ¯uxes should be taken

into account and cannot be omitted without change of

the spectral properties of the anisotropic heat conduc-

tion equation. The separation of variables can be strictly

performed in case of the 2D toroidal geometry including

the X-point by employing a so-called `ballooning type'

of perturbation. The ballooning representation has been

®rst invented to overcome the same di�culty in the

ballooning equation of the MHD perturbation in the

toroidal geometry [5]. Below we will show that this type

of perturbation, being applied to the heat equation can

resolve the problem of the separability of the variables

and to provide the analyses of the onset conditions

without any `simpli®ed' suggestions, corrupting the op-

erator of the 2D di�erential equation.

2. Equation and topology

We begin the linear stability analyses by considering

the heat equation in orthogonal ¯ux co-ordinate system

and assuming the constant pressure along the magnetic

®eld lines:

_e� 1���
g
p o

oxi
� ���gp qi� � Se and �B~rp� � 0; �1�

where

qi � ÿv?gik oT
oxk
ÿ �v== ÿ v?�bi bk oT

oxk

� �
; j b~2j � 1: �2�

Here bi and qi are the covariant components of a unit

vector in the direction of the magnetic ®eld, b~ � B~ =jB~ j,
and a heat ¯ux component, respectively. In Eq. (2) we

took into account the di�erent heat conduction coe�-

cients along B, vk and across the magnetic surfaces, v?.

The source term in Eq. (1) arises from impurity radia-

tion, Se � ÿn2czL�T �, where n is a plasma density, L�T � is

a cooling rate function and cz is an impurity concentra-

tion. The rest of the de®nitions are obvious. We aim to

consider the linear stability of the Eq. (1) in toroidal

geometry close to the separatrix area. For this purpose

we choose the orthogonal ¯ux co-ordinate system al-

lowing for a plasma shape with X-point. For simplicity

we choose the topology created by a pair of parallel wires

carrying equal currents [6]. The model possesses a sep-

aratrix, with an X-point midway between the wires and

allows one to investigate thermal stability at various

distances from the separatrix and to examine the e�ect on

marginal stability when changing the location (in poloi-

dal angle) of the X-point. The metric coe�cients can be

expressed analytically. The line element in this case reads

as: ds2 � h2�dq2 � dh2� � R2 du2, where q is marking the

magnetic surfaces, and h and u are the poloidal and to-

roidal angular variables. Here gww � ghh � h2; guu �
R2;

���
g
p � h2R�h;u� and h2 � e2q=4y2

0 b2. The major ra-

dius for the current point position at the surface is

R�h; q� � R0=y0 �
���������������������a� b�=2

p
, R0 is the distance from

the azimuthal axes to the current position at the mid-

plane, y0 is the distance of the current wire from the X-

point position (see Fig. 1). Here a � eq cos hÿ 1 and

b2 � 1ÿ 2eq cos h� e2q. We shall consider the surfaces

lying inside the separatrix and they are labelled by a

parameter q, such that when q! ÿ1 the surfaces be-

come circular. As q! 0, the shape of the surfaces ap-

proaches that of a separatrix and h / 1=q. For numerical

convenience we will use below another parameter for

labelling the surfaces, n, which is linearly shifted relative

to q, n � kq� const. Here k � 7:9. n ranges from ÿ1 at

the core area to some positive value n � nsep�nsep � 0:68�
at the separatrix. The w95 distance corresponds to

about n95 � 0:6. The poloidal magnetic ®eld caused by

straight currents and the toroidal magnetic ®eld can be

Fig. 1. Co-ordinate system allowing for the X-point.
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chosen as bh � c=
��������������
h2 � c2

p
; bu �

�������������
1ÿ b2

h

p
; bq � 0,

where bh � Bh=B, bu � Bu=B are the physical compo-

nents and c � const: is taken to mach the ITER magnetic

®eld.

Eq. (1) in the orthogonal co-ordinates read:

o
oh
fh2Rqhg � k

o
on
fh2Rqng � o

ou
fh2Rqug

� ÿn2czL�T �h2R �3�
and p � const: on the magnetic surfaces. Here

qh � ÿ vh

h2
h

oT
oh
ÿ �v== ÿ v?�

bh

hh

bu

R
oT
ou

; �4�

qn � ÿ v?
h2

q

oT
on

; �5�

qu � ÿ vu

R2

oT
ou
ÿ �v== ÿ v?�

bh

hh

bu

R
oT
o#

; �6�

here v# � v? � �v== ÿ v?�b2
h and vu � v? � �v== ÿ v?�b2

u.

In equilibrium, due to the toroidal symmetry of the

problem we can omit the third term in Eq. (4). The

equation reveals several equilibrium solutions which

may be classi®ed as those which have a constant tem-

perature along the ®eld line (MARFE-free, radial equi-

librium) and to a MARFE equilibrium when the

temperature varies along the ®eld line, i.e. exhibit a

MARFE-like character. The ®rst case can also be con-

sidered as a poloidally symmetric radiating region on

closed ¯ux surfaces (detached MARFE) and its linear

stability against the most unstable poloidal mode has

been treated in [3] as an eigenvalue problem, ignoring

the dependence of the metric coe�cients on h. In the

geometry adopted here a poloidally symmetric equilib-

rium reads as a balance of the radial heat ¯uxes in-

coming to and outgoing from the poloidal layer:

Rqn
h
k

� �2

n

� Rqn
h
k

� �2

1
ÿ
ZT
1

2n2czL�T � hR
k

� �2

v? dT ;

where qn
h
k

dn � ÿv? dT �7�

this implies that the equilibrium can not be only a

function of the minor radial co-ordinate (as it taken in

[3]), but it varies with poloidal angle. Another equilib-

rium corresponds to the temperature variation along the

®eld line and can be caused by a strong radiative cooling

due to impurity accumulation in the vicinity of the X-

point. The stability analyses in the last case de®nes

which temperature gradients are consistent with the

MARFE location at the X-point.

The stability analyses of Eq. (1), with the periodic

boundary conditions in poloidal direction on the closed

magnetic ®eld lines, must be treated as an eigenvalue

problem for the parabolic partial di�erential equation.

In the above equation the thermal coe�cients are taken

as a function of temperature and density: v== � v==0T 5=2,

v? � v?0nT , where v==0 and v?0 are some constant val-

ues. We require the solution to be 2p-periodic in h;u
space and vanish at in®nity with respect to n. Obviously

the operator in Eq. (3) is not separable as it stands.

Following [5] we consider Eq. (3) in ``ballooning space''

± which is the extended in®nite h domain and try a

temperature perturbation of the form

T �h; n;u� � W �y�e
im�uÿ

Ry
0

q�n;t�� dt

; �8�
where y � hÿ h0, is a toroidal mode number and

q�n; y� � �hh=R��bu=bh�. The trial function (8) corre-

sponds to a perturbation with a long parallel wavelength

and short perpendicular wavelength with a large har-

monic number mq� 1. h0 is a free parameter in the

ballooning presentation. The perturbation (8) enables us

to separate variables and brings us to the following 1D

Schr�odinger-type equation for U�y�:
U00y � U�y; n;m; c�U; �9�
where U � W =bh

���
R
p

and for the potential well we have:

U�y; n;m; c� � Um�y; n;m� � Uz�y; n; c�
� Uh�y; n;rT0�; �10a�

Um�y; n;m� � m2 v?
v==b

2
h

h2
h

R2b2
h

� I2
n

� �
; �10b�

Uz�y; n; c� � c
h2

v==b
2
h

o
oT

L�T �
T 2

� �
; �10c�

Uh�y; n;rT0� � 1

4

o ln�Rvh�
oy

�
� o lnvh

oT
oT
oy

� �
0

�� �2

� 1

2

o
oy

o ln�Rvh�
oy

�
� o lnvh

oT
oT
oy

� �
0

�� �
ÿ 1

Rvh

o
oy

R
ovh

oT

� �
oT
oy

� �� �
0

: �10d�

Here c � p2cz is an eigenvalue and we denote the equi-

librium terms in Eq. (10d) by prescribing index 0.

Eq. (9) is an ordinary 1D di�erential equation, which

can be easily analysed and solved numerically, assuming

that a new independent variable y varies in the in®nite

domain. The boundary conditions are now: U��1� � 0;
y 2 �ÿ1;1�. The basic idea of the chosen transfor-

mation is that the spectrum of this eigenvalue problem

in the in®nite h range is the same as in the original

Eq. (3) in the periodic poloidal domain [5]. Following

the property of the ballooning modes only terms of the

order of m2 remained in Eq. (9).

Below the eigenvalue problem (9)±(10d) has been

solved numerically. The domain of integration of 5p in

poloidal angle was found to be adequate. As a reference
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we took the ITER-like parameters (R� 8 m, B� 5.6 T

etc.). Argon has been taken as an impurity sample and

the cooling rate L(T) from [7] has been employed, as-

suming a non-coronal radiative equilibrium. The second

equation in (1) for pressure balance along the magnetic

®eld assumes that the pressure perturbation p0 � 0, and

that impurities are following the perturbations of the

plasma ions.

3. Analysis

The ®rst term Um in the expression for the potential

well (10a)±(10d) is always positive. It represents the to-

roidal part of the perturbation and is attributed to a

stabilizing role of the perpendicular (to the magnetic

®eld lines) heat ¯uxes both along the magnetic surfaces

�/ h2
h=R2b2

h� and across the surfaces �In � k
R y

0
oq=on dy�.

The second term Uz is a destabilizing term and is at-

tributed to the thermal instability. This term creates a

negative potential due to a negative slope of the cooling

rate function in the corresponding temperature domain.

The rest of the terms in Uh are associated both with the

poloidal variation of the magnetic topology (volume

element and the parallel heat ¯ux) and with the equi-

librium temperature gradient along the ®eld lines. The

stabilizing e�ect of the parallel heat ¯ow reveals itself in

denominators of all terms, which contain the value

vh � v==b
2
h, so that the contribution of all terms (stabi-

lizing or destabilizing) in the potential well is normalized

to that of the parallel heat conductivity. In the vicinity of

the X-point the ¯ux expansion and the vanishing of the

poloidal projection of the parallel heat ¯ux should di-

minish the stabilizing e�ect as �b2
h=h2 ! qÿ4�q! 0� and

Um ! 0 at the separatrix. Analysis shows that the po-

loidal variations in Uh make the stability conditions

more complicated.

First we consider the toroidally symmetric tempera-

ture perturbations (m� 0). Fig. 2 shows the stability

diagram for such perturbations at the magnetic surface

position n � 0:6, which corresponds roughly to w95. The

stability diagram has two regions, the region above the

marginal value of c � p2cz which is unstable to marfes

and the region below this value where the temperature

perturbation become stable. The marginal c increases as

expected for higher temperatures. Figs. 3 and 4 show the

corresponding eigenfunction and potential behaviour vs.

poloidal angle for T� 100 eV. Numbers on ®gures in-

dicate: 1 for Um terms, 2 for Uz, 3 for the terms in Uh

proportional to the equilibrium temperature gradient, 4

and 5 represent the ®rst terms in Uh. The dashed line

shows the resulting potential. It is interesting to note,

that at h � 0 the potential has a maximum (the eigen-

function passes through the minimum (see Fig. 3)) and

the negative part of the well is shifted symmetrically

away from the X-point. This indicates that the pertur-

bations are more stable at the X-point, than expected.

This result is attributed to the poloidal variation of the

coe�cient in Uh, namely: 1=2�o=oh��o ln�Rb2
h�=oh� which

overcomes the negative contribution from Uz at the X-

point and creates two negative wells in neighbouring

positions to the X-point. The closer to the separatrix the

well is located the deeper it becomes, however, in reality

its shape and deepness do not change much, because

they are limited by a similar term as the one in

Uh: 1=4�o ln�Rb2
h�=oh� which gives a positive contribu-

tion. This is the reason, why the perturbations become

almost insensible to the radial position from the sep-

aratrix (see Fig. 5), except in the very vicinity to X-

point.

The stability of the toroidal perturbations �m 6� 0� is

shown in the Figs. 6 and 7. The critical impurity con-

tent, required for a MARFE onset can be found for each

Fig. 2. Stability diagram for toroidally symmetric temperature

perturbation on the magnetic surface n� 0.6 (95%); toroidally

mode number m� 0.

Fig. 3. The eigenfunction for m� 0; T� 100 eV.
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toroidal mode number m (at given plasma density or

pressure). The perturbations of this type become more

stable due to the stabilizing role of the perpendicular

heat ¯uxes. They are strongly stabilized especially near

the X-point, where the perturbations on each magnetic

®eld line approaches each other, resulting in strong

gradients both across and along the surfaces. This in-

creases the ¯uxes and brings about the stabilization. Far

from the X-point position, the shape of the potential

well becomes more shallow (see Fig. 8) due to the pos-

itive contribution of Um.

We also investigated how sensitive the stability is

against the poloidal variation of the temperature. We

chose the equilibrium temperature pro®le along the ®eld

line as T �h� � T1 ÿ T2 cos h, where T1 is some average

temperature. By varying T2 we ®nd that the potential

well (being mostly a�ected by Uz) becomes negative and

centred at the X-point, whereas the contribution of the

rest terms in Uh is negligible. This e�ect of destabiliza-

tion (the increasing of Uz) is mainly due to the lowering

of vh�T ; h� at low temperatures.

4. Conclusions

The main results are the following. The 2D linear

stability problem of a MARFE-like temperature per-

turbation on closed magnetic surfaces has been reduced

Fig. 5. Marginal value p2cz on the di�erent magnetic surfaces,

m� 100; for T� 30 eV and T� 100 eV. The most unstable

position is slightly above the X-point location, which corre-

sponds to the minimum c� p2cz.

Fig. 7. Ar concentration vs. plasma density at given toroidal

mode number m, T� 100 eV, n� 0.6.

Fig. 6. Stability diagram for toroidal temperature perturbation

on the magnetic surface, m > 1; n� 0.65. Above some critical

m2p the perturbation does not exist any more.

Fig. 4. Potential U vs. poloidal angle; toroidally symmetric

perturbation, m� 0; T� 100 eV. Dashed line is a sum of all

terms; Um� 0.
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to a 1D eigenvalue problem using the ballooning rep-

resentation for the perturbation. This type of a pertur-

bation has a long parallel wavelength and short

perpendicular wavelength typical for ballooning modes.

The toroidally inhomogeneous temperature perturba-

tions with non-zero mode toroidal numbers, m, having a

weak variation along the magnetic ®eld lines have been

analysed and compared with toroidally symmetric tem-

perature perturbations (m� 0). The trial functions for

the temperature perturbations for both (m� 0) and

(m > 1) cases are localized on the closed magnetic sur-

faces close to the X-point. The toroidal mode numbers

m of marginally stable perturbations were found as a

function of impurity concentration (at given plasma

density or pressure). The geometry e�ects (variation of

the metric coe�cients with poloidal angle) have a strong

in¯uence on stability, ensuring localization of the marfe-

type perturbation slightly above the X-point.

Finally it should be noted that here only one type of

the possible MARFE-like perturbation was considered,

namely the ballooning type, allowing one to reduce the

problem to a 1D equation. These perturbations are lo-

calized on the magnetic surfaces and have a similar

structure on each neighbouring surfaces. However, there

could be a variety of other type of perturbations, which

can also be related to the thermal stability problem and

can involve di�erent sources of free energy. We choose

the ballooning modes just for illustrative purposes in

order to show that the property of the heat operator can

be easily violated by arbitrary ignoring its 2D structure.

It is especially a concerns for the X-point area where the

spectral analyses becomes complicated
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